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The local structure of unweighted networks can be characterized by the number of times a subgraph appears
in the network. The clustering coefficient, reflecting the local configuration of triangles, can be seen as a
special case of this approach. In this paper we generalize this method for weighted networks. We introduce
subgraph “intensity” as the geometric mean of its link weights and “coherence” as the ratio of the geometric to
the corresponding arithmetic mean. Using these measures, motif scores and clustering coefficient can be
generalized to weighted networks. To demonstrate these concepts, we apply them to financial and metabolic
networks and find that inclusion of weights may considerably modify the conclusions obtained from the study
of unweighted characteristics.
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The network approach to complex systems has turned out g =TT w Uligl (1)
to be extremely fruitful and it has revealed some general (i) elg L '

principles applicable to a large number of systems. Studies
have produced unexpected findings such as the ubiquity ofhere|ly| is the number of links in,. The definition suggest
scale freeness, the frequent appearance of high clustering,shift in perspective from regarding subgraphs as discrete
and the relationship between functionality and the high apebjects(either exist or ngtto a continuum of subgraph in-
pearance frequency of specific motifs. This approach hatensities, where zero or very low intensity values imply that
also led to a number of novel paradigmatic models, providthe subgraph in question does not exist or exists at a practi-
ing a holistic framework in which the details of the interac- cally insignificant intensity level. In practice, low intensity
tions between the constituents of the complex systems afgalues could result, for example, from measurement noise.
disregarded and only their scaffolds are considé¢fgdd ~ Due to the nature of the geometric mean, the subgraph
A deeper understanding of these systems requires that, jRtensity|(g) may be low because one of the weights is very
addition to the under]ymg n_etwqu structure, ]nformat|on low, or it may result from all of the weights being low. In
about the strength of interactions is also taken into accounfyqar to distinguish between these two extremes, we intro-

This is accomplished by assigning weights to the links, sucla ; ;
X i X ; uce subgraph coheren as the ratio of the geometric
as transportation fluxes in the Internet and air traffic net grap Ckg) 9

works [2,3], or the reaction fluxes building the metabolic to the arithmetic mean of the weights as
pathways of a cell4]. Weights can also be obtained by ap- _ -
plying a classificatior{or clustering scheme to a correlation Q9 =1l 2 Wi @
matrix, or for understanding the structure underlying the dy-
namics of microarray5] and stock market daf@,7]. Opti-  HereQe[0,1] and it is close to unity only if the subgraph
mal paths[8] and minimum spanning tre¢8] also clearly = weights do not differ much, i.e., are internally coherent.
depend on the distribution of weights. These examples indi- The concept of a motif was originally introduced to de-
cate the need to generalize the network characteristics toote “patterns of interconnections occurring in complex net-
weighted networks. Some recent efforts towards this goal arerorks at numbers that are significantly higher than those in
the discussion of the clustering coefficient for node weightsandomized networks[13]. However, this has led to some
[10], introduction of a definition for the link weighted case confusion, which partly stems from the specification of the
[3,11], and the mapping of weighted networks to multigraphsrandom ensembile, i.e., the underlying null hypothé¢s#4.
[12]. Our aim in this paper is to introduce a set of practicalWe define a motif as a seensemblg of topologically
tools that may be used to study the structure of a diversequivalent subgraphs of a network. With weighted networks
group of systems where interactions strengths can be olit becomes more natural to deal with intensities as opposed
tained and where omitting them would lead to a considerabléo numbers of occurrence, where the latter is obtained as a
loss of information. Many biological and social systems arespecial case of the former. The motifs showing statistically
expected to fall into this category. significant deviation from some reference system can then be
In general, we consider any weighted network as a fullycalled high or low intensity motifs.
connected graph where some of the links bear zero weights. We define the total intensitly, of a motif M in the net-
For simplicity, we deal with(directed or undirectgdnet-  work as the sum of its subgraph intensitigg=>4.!(9).
works where the weightv;; between nodes and j is non-  For certain weighted directed motifs, the total intensities can
negative and not necessarily normalized. We introduce thbe computed using simple matrix operations. Let e N
intensity I(g) of subgraphg with verticesvg and linksl; as  weight matrixw describe the network weights. Analogously,
the geometric mean of its weights let A represent the underlyiny X N adjacency matrix such

(i) elg
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thata;=1 if w;;>0, anda;=0 if w;;=0. In an unweighted system, respectively. As the coherence of an unweighted sub-
network, the number of directed paths returning to the startyraph is unity, als@ — z as the weights become binary.

ing node aftek steps can be written as Triangles are among the simplest nontrivial motifs and
k they play an important role as one of the basic quantities of
NK= > [la; =Tr{Ak, (3) network characterization in defining the clustering coeffi-
i el Ot cientC; at nodei as
where the summation goes over all possible sites ignd 2t
=i, [1]. Let W represent a matrix obtained from/ CFm, )

=[w;;] by taking thekth root of its individual elements such
thatW % =[wi]. The total intensity of motiM in the net- ~ wherek; is the degree of node andt; is the number of
work is triangles attached to the nofig15]. This quantity is normal-
K 1k ized between 0 and 1, and it characterizes the tendency of the
_ _ 1k nearest neighbors of nodeo be interconnected.
v = am EI (H i vim) =au W), (@) As triangles are one type of subgraph, the definition in Eq.
« (1) may be used to yield the weighted clustering coefficient
wherea,, is a combinatorial factor ensuring that each sub-”(‘:i by replacing the number of trianglésin Eq. (8) with the
graph is counted only once. For example, for the nonfrusgy of triangle intensities as
trated trianglg(Fig. 3, middle columpthe total intensity be-
2 > (W) M2, 9

1
ki(ki = 1) Tk

i, g \x=1

comesl,=;Tr{(W¥3)3}. A change in the direction of a link
can be taken into account using the matrix transpose. For
some motifs, such as the path of orddiFy. 3, left column

we need a “block” matri)B:[bij] to prevent us from double- where we use weights scaled by the largest weight in the
counting subgraphs, in this case to prevent counting everetwork, W;=w;;/maxw;). This definition fulfills the re-
triangle also as three paths of order 2. In this matrix tthljirement thaC, — C; as the weights become binary. We can
diagonal elementy;=0 and for the nondiagonal elements relate the unweighted and weighted clustering coefficients

bjj =0 whena;; =1 org; =1, and otherwis@; =1. This allows 0,9 the average intensity of triangles at nddas I,
E?r tSV(\i\;g:IE\}/(lt’EFB to'@l mtensm; é)f tg‘le patht_motlg a§f =(1/t)Zgeaty!(9), Where M(v;) denotes the neighborhood
=T ) Jve prevent couble counting nhere for ¢ nodei, and this allows us to write the weighted clustering
reasons of compatibility with earlier work, but find that it -

: . coefficient as
poses no serious problem as long as the system of counting is
systematically applied both in the empirical and random C=1C. (10)
case. Double counting could, in fact, be desirable if the in- _ _ ' _ ' '_ _ _
teraction strength measurements are noisy. For example, efihis equation gives a plausible interpretation of the weighted
vision adding a small numberto every link(including the clu.stermg c_ogfflment: Itis the unwelghténbpologmfa) Clus_—
zero$ to represent a noise component. This would lead tdering coefficient renormalized by the average intensity of
large number offalse positivé triangles in the network, and triangles at the node. Naturally, a weighted clustering coef-

counting only them would lead us to miss the structure hid<ficient Ei’ can also be formulated by renorrﬂalizing the un-

den inside them, e.g. important paths of order 2.~ aighted coefficient by the average cohereficeinstead of
In Ref.[13] the z score for studying the statistical signifi- . — .
the average intensitly, around node.

cance of motif occurrences was defined as . » ; . .
An alternative definition for weighted clustering coeffi-
Zy = (Ny = <{ny)) o, (5  cient was given in Ref(3] as

Ei:

where Ny, is the number of subgraphs in motill in the A 1 (W + Wy
empirical network andny,) is the expectation of their num- C= (k- 1)2 2 &jj Ak (11
ber in the reference ensemble, ang is the standard devia- St Tk
tion of the latter. Replacing the number of subgraphs by theiwheres; denotes the strength of nodedefined as =W,
intensities generalizes thescore to motif intensity score and a; is an element of the underlying binary adjacency
-~ _ _ 28 i \2\1/2 matrix. This definition considers only two of the three link
2 = (= (i) (i) = 7)™ ©® weights, namely, those adjacent to nddev; andw;) and
whereiy, is the total intensity of motiM in one realization requires that a link exist also between noflesdk but does
of the reference system. It is clear that E(®.and(6) co-  not take its weight(w;,) into account. The difference be-
incide for binary weights, implying th@— z in the limit. As  veen the two weighted clustering coefficielésand @i is
an analog to the motif intensity score, we introduce the motif;strated schematically in Fig. 1.
coherence score as Next we apply these concepts to two real networks.
> _ 2\ 2172 (A) Undirected financial network\Ve considered a set of
2w = (Qu = A/ (G = ()™ ™ daily price data foN=477 NYSE traded stocks from 1980
whereQy, andqy are the total coherence for moM in the  to 2000. We calculated the correlation matrix by extracting
empirical network and in one realization of the referencefour-year return windows in order to study the system'’s dy-
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FIG. 1. A schematic illustration of the difference betweéerand 50 50 >0
C~:i. The weightw;, is gradually decreased from left to right. The §800 4000 420000 100 200 9100 500 600 700
value of C; is equal for the first three triangles and drops to zero Subgraph count N
suddenly for the fourth triangle agy— 0, implying thatay=0. In 250 N 250 ~ 250 A
contrast, the value of; decreases a5, ~wj%, tending smoothly to 200 S %Jj200 4—%[1200 s
zero in the limit. 150 150 150
100 100 100

namics. Here the nodes correspond to stocks, and the

weighted undirected links to the elements in the correlation 50 >
matrix. Thus, the stronger the weight, the stronger the cou- %, ey 100 150 S0 2 2 o 5 10 15
pling between the stock returns in terms of their linear cor- Total intensity |

relation. The links are inserted in the network in descending _ - N -
order starting from the strongest one until a predetermined FIG. 3. (Color onling Motif intensities for the empirical net-

number of links has been reached. The method is describetork (vertical lineg and the corresponding random ensemighés-
in detail in Ref.[7]. tograms, for the unweightedupper panel and weighted(lower

We have shown earlier that the famous Black MondayPane) cases.
(10/19/1987 causes a temporary transition not only in the . o o
topology but also in the weights of the netwdrk6]. Our  for the clustering coefficients OAutSICQEElSIAdQ the crash “Qe—
aim is to use it as an example of a network undergoing thisiod” are C=0.57(C=0.60, C=0.58(C=0.60, and C
type of twofold transitiontopology and weighfsand to see - 36(C=0.50. These numbers imply th& andC increase
whether the changes are reflected in the network’s clusteringsg than 594 during the crash which is less than their normal
statistics. In Fig. 2 we show the three (_:Iusterlng_ Coeﬁ'c'ems(outside the crash peripdluctuation, measured at 6.2% as
avgraged over the network., as fﬂurl1ct|ons of time: the Unyeir standard deviation relative to the mean. However, the
weightedC of Eq. (8), the weightedC introduced in Ref[3]  o/5qh increase® by 39%, which is considerably larger than

and given in Eq(11), and the weighted introduced in E.  he the level of fluctuation at 9.7%. Thi@,has a consider-

©). . . ably higher “signal-to-noise” ratio. The results are not af-
The crash is not seen very clearly @ as it can only fected significantly by the value of the predetermined thresh-

capture  the topolochaI aspects of the transition. Theyq | the limit of inserting all the links of the correlation

weighted coefficientC is also fairly insensitive to the matrix, we obtain a fully connected network for whi¢h

changes in link weights and practically coincides Wh =1 for 4l times, wherea& still shows the effect of the

The fact thatC does reflect the transition indicates its ability crash clearly.

to capture both aspects of the transition. The average values (B) Directed metabolic networkCellular metabolism can

be represented as a directed network of intracellular molecu-

o7 ] lar interactions. The network consists of nodésY;, which
] i represer_lt the chemicals and they are linked if connegted by a
0.6t J‘-"‘w Iy W A ) o T metabolic reaction. Here we focus on the metabolic path-
R | "SR W | 0 [ Bl ways of the bacteriunischerichia coligrown in glucose,
o YO o M LT which has been studied intensé$j. In order to experiment
05 W i o b 2 with weighted directed motifs, we define the weights through

a biochemical reaction of the formX;+---x,X,— V.Y
+---ymYm With a positive(negative net flux f if the balance
of the reaction lies to the righdeft). The flux provides an
0.4r ‘ L overall measure of the relative activity of each reaction. We
A W g ST define the weights asv;=(y;/x)f, reflecting the rate at
Y A ' which X; is converted intoy;.
1984 1986 1988 1990 1992 1994 1996 1998 In order to employ motif intensity scores a reference sys-
Time (vear) tem, corresponding to a null hypothesis, needs to be estab-
lished. We follow a typical approach by constructing an en-
FIG. 2. (COlOf online Average ClUStering Coefflcients for the semble of random networks by Conserving the degree
financial network. The weighted clustering coeffici€nt+) of Eq.  sequence of the empirical network using a switching algo-
(9) shows the effect of Black Monday clearly. The unweigh@d  rithm [13], which preserves the single-node characteristics of
(d) of Eqg. (8) and the weightedC (X) of Eq. (11) practically  the empirical network. The weights are obtained simply by
coincide(the markerd] and X are used alternately permuting the empirical weights. While removing any

Clustering coefficient

0.3
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weight correlations, the approach guarantees conservation efalization of thez scores to motif intensity scor¢g&gs. (6)

the empirical weight distribution. and(7)], and the clustering coefficient to weighted clustering
We summarize our findings in Fig. 3, in which we show coefficient[Eq. (10)]. Our studies with undirected financial

the unweighted and weighted motif intensities for a subset ofetworks show that the weighted clustering coefficient re-

the studied motifs(i) path of order 2{ii) nonfrustrated tri-  focts the effects of a market crash which is hardly observed

angle, andiii) frustrated triangle. The motif intensity scores with other clustering characteristics studied. Our results on

for the unweighted networks, which are based on the sub; . : S .
graph counts, arg=-5.4, z,=12.8, andz; =-0.5, and for the directed metabolic network of E. Coli indicate that incor-

the weighted network® =14.8,%,=33.8,%;=9.0. These re- poration of weights into network motifs may considerably
sults show that a move from unweighted to weighted charModify the conclusions drawn from their statistics.

acteristics can cause a change from low to high intensity, i.e., We are thankful to A-L. Barabasi, E. Almaas, and S.

from under-representation to over-representation. The inten- ) .
b P uchty for the metabolic network data and useful discus-

sity may also become amplified, or change from statistically”. X i
insignificant to being over-represented. sions. This work was carried out at the Center of Excellence

In this paper we have proposed two concepts for the chaRf th_e Finnish Academy of_Sciences, Computational Engi-
acterization of weighted complex networks: the intensity and€€ring, HUT. J.K. was partially supported by the Center for
coherence of a subgraph. They allow for a very natural genAPplied Mathematics and Computational Physics, BUTE.
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