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The local structure of unweighted networks can be characterized by the number of times a subgraph appears
in the network. The clustering coefficient, reflecting the local configuration of triangles, can be seen as a
special case of this approach. In this paper we generalize this method for weighted networks. We introduce
subgraph “intensity” as the geometric mean of its link weights and “coherence” as the ratio of the geometric to
the corresponding arithmetic mean. Using these measures, motif scores and clustering coefficient can be
generalized to weighted networks. To demonstrate these concepts, we apply them to financial and metabolic
networks and find that inclusion of weights may considerably modify the conclusions obtained from the study
of unweighted characteristics.
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The network approach to complex systems has turned out
to be extremely fruitful and it has revealed some general
principles applicable to a large number of systems. Studies
have produced unexpected findings such as the ubiquity of
scale freeness, the frequent appearance of high clustering,
and the relationship between functionality and the high ap-
pearance frequency of specific motifs. This approach has
also led to a number of novel paradigmatic models, provid-
ing a holistic framework in which the details of the interac-
tions between the constituents of the complex systems are
disregarded and only their scaffolds are consideredf1g.

A deeper understanding of these systems requires that, in
addition to the underlying network structure, information
about the strength of interactions is also taken into account.
This is accomplished by assigning weights to the links, such
as transportation fluxes in the Internet and air traffic net-
works f2,3g, or the reaction fluxes building the metabolic
pathways of a cellf4g. Weights can also be obtained by ap-
plying a classificationsor clusteringd scheme to a correlation
matrix, or for understanding the structure underlying the dy-
namics of microarrayf5g and stock market dataf6,7g. Opti-
mal pathsf8g and minimum spanning treesf9g also clearly
depend on the distribution of weights. These examples indi-
cate the need to generalize the network characteristics to
weighted networks. Some recent efforts towards this goal are
the discussion of the clustering coefficient for node weights
f10g, introduction of a definition for the link weighted case
f3,11g, and the mapping of weighted networks to multigraphs
f12g. Our aim in this paper is to introduce a set of practical
tools that may be used to study the structure of a diverse
group of systems where interactions strengths can be ob-
tained and where omitting them would lead to a considerable
loss of information. Many biological and social systems are
expected to fall into this category.

In general, we consider any weighted network as a fully
connected graph where some of the links bear zero weights.
For simplicity, we deal withsdirected or undirectedd net-
works where the weightwij between nodesi and j is non-
negative and not necessarily normalized. We introduce the
intensity Isgd of subgraphg with verticesvg and links lg as
the geometric mean of its weights

Isgd = S p
si j dPlg

wijD1/ulgu
, s1d

whereulgu is the number of links inlg. The definition suggest
a shift in perspective from regarding subgraphs as discrete
objectsseither exist or notd to a continuum of subgraph in-
tensities, where zero or very low intensity values imply that
the subgraph in question does not exist or exists at a practi-
cally insignificant intensity level. In practice, low intensity
values could result, for example, from measurement noise.

Due to the nature of the geometric mean, the subgraph
intensityIsgd may be low because one of the weights is very
low, or it may result from all of the weights being low. In
order to distinguish between these two extremes, we intro-
duce subgraph coherenceQsgd as the ratio of the geometric
to the arithmetic mean of the weights as

Qsgd = IsgdulguY o
si j dPlg

wij . s2d

HereQP f0,1g and it is close to unity only if the subgraph
weights do not differ much, i.e., are internally coherent.

The concept of a motif was originally introduced to de-
note “patterns of interconnections occurring in complex net-
works at numbers that are significantly higher than those in
randomized networks”f13g. However, this has led to some
confusion, which partly stems from the specification of the
random ensemble, i.e., the underlying null hypothesisf14g.
We define a motif as a setsensembled of topologically
equivalent subgraphs of a network. With weighted networks
it becomes more natural to deal with intensities as opposed
to numbers of occurrence, where the latter is obtained as a
special case of the former. The motifs showing statistically
significant deviation from some reference system can then be
called high or low intensity motifs.

We define the total intensityIM of a motif M in the net-
work as the sum of its subgraph intensitiesIM =ogPMIsgd.
For certain weighted directed motifs, the total intensities can
be computed using simple matrix operations. Let theN3N
weight matrixW describe the network weights. Analogously,
let A represent the underlyingN3N adjacency matrix such
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that aij =1 if wij .0, andaij =0 if wij =0. In an unweighted
network, the number of directed paths returning to the start-
ing node afterk steps can be written as

Nskd = o
i1,. . .,ik

p
x=1

k

aix,ix+1
= TrhAkj, s3d

where the summation goes over all possible sites andik+1
= i1 f1g. Let W s1/kd represent a matrix obtained fromW
=fwijg by taking thekth root of its individual elements such
that W s1/kd=fwij

1/kg. The total intensity of motifM in the net-
work is

IM = aM o
i1,. . .,ik

Sp
x=1

k

wix,ix+1D1/k

= aMTrhsW s1/kddkj, s4d

whereaM is a combinatorial factor ensuring that each sub-
graph is counted only once. For example, for the nonfrus-
trated trianglesFig. 3, middle columnd the total intensity be-
comesID= 1

3TrhsW s1/3dd3j. A change in the direction of a link
can be taken into account using the matrix transpose. For
some motifs, such as the path of order 2sFig. 3, left columnd
we need a “block” matrixB=fbijg to prevent us from double-
counting subgraphs, in this case to prevent counting every
triangle also as three paths of order 2. In this matrix the
diagonal elementsbii =0 and for the nondiagonal elements
bij =0 whenaij =1 oraji =1, and otherwisebij =1. This allows
us to write the total intensity of the path motif asI/

=TrhW s1/2dW s1/2dBj. We prevent double counting here for
reasons of compatibility with earlier work, but find that it
poses no serious problem as long as the system of counting is
systematically applied both in the empirical and random
case. Double counting could, in fact, be desirable if the in-
teraction strength measurements are noisy. For example, en-
vision adding a small numbere to every link sincluding the
zerosd to represent a noise component. This would lead to
large number of9false positive9 triangles in the network, and
counting only them would lead us to miss the structure hid-
den inside them, e.g. important paths of order 2.

In Ref. f13g thez score for studying the statistical signifi-
cance of motif occurrences was defined as

zM = sNM − knMld/sM , s5d

where NM is the number of subgraphs in motifM in the
empirical network andknMl is the expectation of their num-
ber in the reference ensemble, andsM is the standard devia-
tion of the latter. Replacing the number of subgraphs by their
intensities generalizes thez score to motif intensity score

z̃M = sIM − kiMld/skiM
2 l − kiMl2d1/2, s6d

whereiM is the total intensity of motifM in one realization
of the reference system. It is clear that Eqs.s5d and s6d co-
incide for binary weights, implying thatz̃→z in the limit. As
an analog to the motif intensity score, we introduce the motif
coherence score as

z8̃M = sQM − kqMld/skqM
2 l − kqMl2d1/2, s7d

whereQM andqM are the total coherence for motifM in the
empirical network and in one realization of the reference

system, respectively. As the coherence of an unweighted sub-

graph is unity, alsoz8̃→z as the weights become binary.
Triangles are among the simplest nontrivial motifs and

they play an important role as one of the basic quantities of
network characterization in defining the clustering coeffi-
cient Ci at nodei as

Ci =
2ti

kiski − 1d
, s8d

where ki is the degree of nodei and ti is the number of
triangles attached to the nodef1,15g. This quantity is normal-
ized between 0 and 1, and it characterizes the tendency of the
nearest neighbors of nodei to be interconnected.

As triangles are one type of subgraph, the definition in Eq.
s1d may be used to yield the weighted clustering coefficient

C̃i by replacing the number of trianglesti in Eq. s8d with the
sum of triangle intensities as

C̃i =
2

kiski − 1doj ,k sw̃ij w̃jkw̃kid1/3, s9d

where we use weights scaled by the largest weight in the
network, w̃ij =wij /maxswijd. This definition fulfills the re-

quirement thatC̃i →Ci as the weights become binary. We can
relate the unweighted and weighted clustering coefficients

through the average intensity of triangles at nodei as Ī i
=s1/tidogPNsvid

Isgd, whereNsvid denotes the neighborhood
of nodei, and this allows us to write the weighted clustering
coefficient as

C̃i = Ī iCi . s10d

This equation gives a plausible interpretation of the weighted
clustering coefficient: It is the unweightedstopologicald clus-
tering coefficient renormalized by the average intensity of
triangles at the node. Naturally, a weighted clustering coef-

ficient C̃i8 can also be formulated by renormalizing the un-

weighted coefficient by the average coherenceQ̄i, instead of

the average intensityĪ i, around nodei.
An alternative definition for weighted clustering coeffi-

cient was given in Ref.f3g as

Ĉi =
1

siski − 1doj ,k
swij + wikd

2
aijaikajk, s11d

wheresi denotes the strength of nodei, defined assi =o jwij ,
and aij is an element of the underlying binary adjacency
matrix. This definition considers only two of the three link
weights, namely, those adjacent to nodei swij and wikd and
requires that a link exist also between nodesj andk but does
not take its weightswjkd into account. The difference be-

tween the two weighted clustering coefficientsC̃i and Ĉi is
illustrated schematically in Fig. 1.

Next we apply these concepts to two real networks.
sAd Undirected financial network. We considered a set of

daily price data forN=477 NYSE traded stocks from 1980
to 2000. We calculated the correlation matrix by extracting
four-year return windows in order to study the system’s dy-

ONNELA et al. PHYSICAL REVIEW E 71, 065103sRd s2005d

RAPID COMMUNICATIONS

065103-2



namics. Here the nodes correspond to stocks, and the
weighted undirected links to the elements in the correlation
matrix. Thus, the stronger the weight, the stronger the cou-
pling between the stock returns in terms of their linear cor-
relation. The links are inserted in the network in descending
order starting from the strongest one until a predetermined
number of links has been reached. The method is described
in detail in Ref.f7g.

We have shown earlier that the famous Black Monday
s10/19/1987d causes a temporary transition not only in the
topology but also in the weights of the networkf16g. Our
aim is to use it as an example of a network undergoing this
type of twofold transitionstopology and weightsd and to see
whether the changes are reflected in the network’s clustering
statistics. In Fig. 2 we show the three clustering coefficients,
averaged over the network, as functions of time: the un-

weightedC of Eq. s8d, the weightedĈ introduced in Ref.f3g
and given in Eq.s11d, and the weightedC̃ introduced in Eq.
s9d.

The crash is not seen very clearly inC, as it can only
capture the topological aspects of the transition. The

weighted coefficientĈ is also fairly insensitive to the
changes in link weights and practically coincides withC.

The fact thatC̃ does reflect the transition indicates its ability
to capture both aspects of the transition. The average values

for the clustering coefficients outsidesinsided the crash “pe-

riod” are C=0.57sC=0.60d, Ĉ=0.58sĈ=0.60d, and C̃

=0.36sC̃=0.50d. These numbers imply thatC andĈ increase
less than 5% during the crash which is less than their normal
soutside the crash periodd fluctuation, measured at 6.2% as
their standard deviation relative to the mean. However, the

crash increasesC̃ by 39%, which is considerably larger than

the the level of fluctuation at 9.7%. Thus,C̃ has a consider-
ably higher “signal-to-noise” ratio. The results are not af-
fected significantly by the value of the predetermined thresh-
old. In the limit of inserting all the links of the correlation
matrix, we obtain a fully connected network for whichC

=Ĉ=1 for all times, whereasC̃ still shows the effect of the
crash clearly.

sBd Directed metabolic network. Cellular metabolism can
be represented as a directed network of intracellular molecu-
lar interactions. The network consists of nodesXi ,Yj, which
represent the chemicals and they are linked if connected by a
metabolic reaction. Here we focus on the metabolic path-
ways of the bacteriumEscherichia coligrown in glucose,
which has been studied intenselyf4g. In order to experiment
with weighted directed motifs, we define the weights through
a biochemical reaction of the formx1X1+¯xnXn→y1Y1
+¯ymYm with a positivesnegatived net flux f if the balance
of the reaction lies to the rightsleftd. The flux provides an
overall measure of the relative activity of each reaction. We
define the weights aswij =syj /xidf, reflecting the rate at
which Xi is converted intoYj.

In order to employ motif intensity scores a reference sys-
tem, corresponding to a null hypothesis, needs to be estab-
lished. We follow a typical approach by constructing an en-
semble of random networks by conserving the degree
sequence of the empirical network using a switching algo-
rithm f13g, which preserves the single-node characteristics of
the empirical network. The weights are obtained simply by
permuting the empirical weights. While removing any

FIG. 3. sColor onlined Motif intensities for the empirical net-
work svertical linesd and the corresponding random ensemblesshis-
togramsd, for the unweightedsupper paneld and weightedslower
paneld cases.

FIG. 1. A schematic illustration of the difference betweenĈi and

Ci
˜ . The weightwjk is gradually decreased from left to right. The

value of Ĉi is equal for the first three triangles and drops to zero
suddenly for the fourth triangle aswjk→0, implying thatajk=0. In

contrast, the value ofCi
˜ decreases asCi ,wjk

1/3, tending smoothly to
zero in the limit.

FIG. 2. sColor onlined Average clustering coefficients for the

financial network. The weighted clustering coefficientC̃ s1d of Eq.
s9d shows the effect of Black Monday clearly. The unweightedC

shd of Eq. s8d and the weightedĈ s3d of Eq. s11d practically
coincidesthe markersh and3 are used alternatelyd.
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weight correlations, the approach guarantees conservation of
the empirical weight distribution.

We summarize our findings in Fig. 3, in which we show
the unweighted and weighted motif intensities for a subset of
the studied motifs:sid path of order 2,sii d nonfrustrated tri-
angle, andsiii d frustrated triangle. The motif intensity scores
for the unweighted networks, which are based on the sub-
graph counts, arezi =−5.4, zii =12.8, andziii =−0.5, and for
the weighted networksz̃i =14.8, z̃ii =33.8, z̃iii =9.0. These re-
sults show that a move from unweighted to weighted char-
acteristics can cause a change from low to high intensity, i.e.,
from under-representation to over-representation. The inten-
sity may also become amplified, or change from statistically
insignificant to being over-represented.

In this paper we have proposed two concepts for the char-
acterization of weighted complex networks: the intensity and
coherence of a subgraph. They allow for a very natural gen-

eralization of thez scores to motif intensity scoresfEqs.s6d
ands7dg, and the clustering coefficient to weighted clustering
coefficientfEq. s10dg. Our studies with undirected financial
networks show that the weighted clustering coefficient re-
flects the effects of a market crash which is hardly observed
with other clustering characteristics studied. Our results on
the directed metabolic network of E. Coli indicate that incor-
poration of weights into network motifs may considerably
modify the conclusions drawn from their statistics.
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